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Definition

Suppose we have a group G acting on a topological space X.
We can find a contractible space EG with a free right G-action.
We then form the quotient space (call it the Borel product)

EG×G X := EG×X/(e · g, x) ∼ (e, g · x).

Definition

The equivariant cohomology of X with respect to G is

H∗G(X) := H∗(EG×G X;Z).

Special case: If X is a point, then H∗G(pt) = H∗(BG), where
BG = EG/G is the classifying space of G. Write ΛG = H∗G(pt)
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For a Torus...

Example

Consider a torus T = (C∗)n. Then ET = (C∞ − 0)n and
BT = (P∞)n, and

ΛT = Z[t1, . . . , tn],

where ti = c1(OP∞(−1)) is the tautological line bundle on the
i-th factor of (P∞)n.
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Equivariant Chern Class

A vector bundle E → X is G-equivariant if G acts on E such
that for all g ∈ G, x ∈ X, e ∈ E, the map e 7→ g · e is a linear
map of vector spaces Ex → Eg·x.

A G-equivariant vector bundle produces an ordinary vector
bundle E×G E → E×G X.

Definition

Define the equivariant Chern class of E as

cGk (E) := ck(E×G E) ∈ H2k
G (X).
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Equivariant Fundamental Class

Similarly, a G-equivariant subvariety V ⊂ X of codimension d
determines a subvariety E×G V ⊂ E×G X of codimension d.

Definition

Define the equivariant fundamental class of V as

[V ]G = [E×G V ] ∈ H2d
G (X).
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Localization

From now on, suppose X is a nonsingular projective T -variety
with finitely many fixed points.

Theorem (Atiyah-Bott localization formula)

For any class α ∈ H∗TX, we have∫
X
α =

∑
p∈XT

α|p
cTtop(TpX)

.
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An Important Example

Example (Chern classes of tangent spaces of Pn−1)

Consider T = (C∗)n acting on Pn−1 by weights t1, . . . , tn,
i.e.

w · [z1, . . . zn] = [t1(w)z1, . . . , tn(w)zn],

where ti ∈ Hom(T,C∗).
The fixed points are pi = [0, . . . , 0, 1, 0, . . . , 0] and the
weights on TpiPn−1 are tj − ti for j 6= i.
Then

cTn−1(TpiP
n−1) =

∏
j 6=i

(tj − ti).
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Steiner’s Problem

What is the number of conics that are tangent to five fixed
general conics? (Jakob Steiner, 1848)

Conics are defined by homogeneous equations
aX2 + bY 2 + cZ2 + dXY + eY Z + fXZ = 0 modulo scalar
multiplication.

Taking the coefficients, the moduli space of conics is P(V ),
where V = Sym2C3.

Then V is 6-dimensional, so P(V ) ∼= P5.

For a fixed conic C, the set of conics tangent to C forms a
sextic hypersurface ZC ⊂ P(V ). So [ZC ] = 6H.
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Solution Setup

Steiner’s claim: by Bezout’s Theorem,∫
P(V )

[ZC1 ] · · · [ZC5 ] =

∫
P(V )

(6H)5 = 7776.

Unfortunately, this is incorrect.

Indeed, every double line is tangent to any conic, so
⋂
ZCi

contains the Veronese surface S ⊂ P5.

(S corresponds to the set of double lines in P2.)

But S ∼= P2, so
⋂
ZCi is not transverse.

Instead, we need to modify the moduli space by blowing up
P(V ) along the Veronese surface S to get the space of
complete conics C = BlS P(V ).
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Complete Conics

First, given a nonsingular conic C ⊂ P2, the (nonsingular) dual
curve C∗ ⊂ (P2)∗ = {l ⊂ P2} is

C∗ := {l ⊂ P2 : l is tangent to C}.

For singular conics, the dual is the closure of the tangents at
nonsingular points.

Mapping [C] to [C∗] gives a rational map P(V ) 99K P(V ∗) that
is regular on P(V ) \ S.
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Complete Conics (cont.)

Its indeterminacy is resolved by blowing up P(V ) at S, and we
get

C

BlS P(V ) {([C], [C∗]) : C,C∗ smooth} ⊂ P(V )× P(V ∗)

P(V ) P(V ∗)

=

=

π
ϕ
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Characterization of Complete Conics

One can show that C consists of four types of figures in P2 :

1 nonsingular conics

2 unions of two lines

3 lines with two marked points

4 lines with one marked point
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Solving Steiner’s Problem

Let Z̃C be the proper transform of ZC .

Given five general conics C1, . . . , C5, one can prove that Z̃Ci

intersect transversally.

For p ∈ P2, define hyperplane Σp ⊂ P(V ) of conics containing
p.

For l ∈ (P2)∗, define hyperplane Θl ⊂ P(V ∗) of conics tangent
to l.

Let σp, τl be the proper transforms. Non-equivariantly, their
classes are independent of p and l.

One can show that Z̃ = 2σ + 2τ in H∗C .
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The Correct Integral

We therefore want to calculate∫
C

[Z̃]5 =

∫
C

(2σ + 2τ)5

= 32

(∫
σ5 + 5

∫
σ4τ + 10

∫
σ3τ2

+ 10

∫
σ2τ3 + 5

∫
στ4 +

∫
τ5
)
.

Note that∫
σiτ5−i =

∫
σ5−iτ i by symmetry;∫

σ5 = 1.

So we only need to calculate
∫
σ4τ and

∫
σ3τ2.
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Constructing the Torus Action

Let T = (C∗)3 act on P2 with weights t1, t2, t3.

The induced action on V = Sym2C3 has weights

2t1, 2t2, 2t3, t1 + t2, t2 + t3, t1 + t3

corresponding to the basis

X2, Y 2, Z2, XY, Y Z,XZ.

The tangent spaces to P(V ) at X2 and XY have weights

TX2P(V ) : {2(t2 − t1), 2(t3 − t1), t2 − t1, t2 + t3 − 2t1, t3 − t1}
TXY P(V ) : {t1 − t2, t2 − t1, 2t3 − t1 − t2, t3 − t1, t3 − t2}.
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Fixed Points of the Torus Action

Recall the localization formula:∫
X
α =

∑
p∈XT

α|p
cTtop(TpX)

.

To use localization, we need the fixed points of C and their
tangent weights. Note that π : C → P(V ) maps fixed points
to fixed points.

1 Over XY, π is an isomorphism, so the corresponding fixed
point in C is a pair of lines.

2 Over X2, we need to add data of one or two points (which
also need to be T -invariant).
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Helpful Diagrams

[0, 0, 1]
X

[0, 1, 0]

Y

[1, 0, 0]

Z

XY

(X, [0, 0, 1]) (X, [0, 1, 0]) (X, [0, 0, 1], [0, 1, 0])
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Tangent Weights of a Blowup

Theorem

Let X be a smooth T -variety and S ⊂ X a smooth T -invariant
subvariety. Let X̃ = BlS X be the blowup, N = NS/X the
normal bundle, and E = P(N)→ S the exceptional divisor.
Take x ∈ E, which corresponds to a line L ⊂ Ns, i.e.
L = O(−1)|x, where E → S maps x to s. Then

TxX̃ = TxE ⊕ L
= Hom(L,Ns/L)⊕ TsS ⊕ L.

Using this, let us calculate the weights at T C .
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Calculating the Tangent Weights (1)

Recall that projects to X2 ∈ S ⊂ P(V ) and that TX2P(V )
has weights

TX2P(V ) : {2(t2 − t1), 2(t3 − t1), t2 − t1, t2 + t3 − 2t1, t3 − t1}.

From the action of T on S ∼= P2, the tangent space TX2S has
weights

TX2S : {t2 − t1, t3 − t1}.

So the normal weights to S at X2 are

NX2S : {2(t2 − t1), 2(t3 − t1), t2 + t3 − 2t1}.
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Calculating the Tangent Weights (2)

Each weight corresponds to a T -invariant line L ⊂ N, hence a
T -fixed point in E.

2(t2 − t1)↔
2(t1 − t2)↔

t2 + t3 − 2t1 ↔

Take L↔ 2(t2 − t1)↔ .
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Calculating the Tangent Weights (3)

We have

T E : {t2 − t1, t3 − t1}

∪ {(t2 + t3 − 2t1)− 2(t2 − t1), 2(t3 − t1)− 2(t2 − t1)}

and so

T C : {t2 − t1, t3 − t1, t3 − t2, 2(t3 − t2)} ∪ {2(t2 − t1)}.

Similar calculations for and .
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The Hyperplane Classes

Recall the localization formula:∫
X
α =

∑
p∈XT

α|p
cTtop(TpX)

.

We need the restrictions of σp and τl at each fixed point.

One can show that

σp = π∗Σp,

τl = ϕ∗Σ∗l ,

[Σp]
T = cT1 (O(1)⊗ C2t1)
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Restrictions of the Classes at the Fixed Points

So for p = ,

σ | = σ | = σ | = Σ | = 0,

σ | = Σ | = t1 − t2,

etc.

and for l = ,

τ | = τ | = τ | = 0,

τ | = t3 − t2,

etc.
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Calculating the Integrals

To calculate
∫
C σ

4τ, consider the class

α = (σ )2σ σ τ .

Then α and α are the only nonzero restrictions. So∫
C
σ4τ =

∫
C
α

=
α|

cTtop(T C )
+

α|
cTtop(T C )

=
α|∏

{weights of T C )}
+

α|∏
{weights of T C )}

= · · ·
= 2.
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Final Solution

Do a similar calculation for σ3τ2 to get
∫
C σ

3τ2 = 4.

We then have∫
C

[Z̃]5 =

∫
C

(2σ + 2τ)5

= 32

(∫
σ5 + 5

∫
σ4τ + 10

∫
σ3τ2

+ 10

∫
σ2τ3 + 5

∫
στ4 +

∫
τ5
)

= 32(1 + 5 · 2 + 10 · 4 + 10 · 4 + 5 · 2 + 1)

= 3264.

This is the correct solution to Steiner’s problem.
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